sábado, 11 de abril de 2015

razones trigonometricas

RAZONES TRIGONOMETRICAS
Las Razones trigonométricas se definen comúnmente como el cociente entre dos lados de un triangulo rectangulo asociado a sus ángulos. 
Existen seis funciones trigonométricas básicas.

Para definir las razones trigonométricas del ángulo: α, del vértice A, se parte de un triángulo rectángulo arbitrario que contiene a este ángulo. El nombre de los lados de este triángulo rectángulo que se usará en los sucesivo será:
  • La hipotenusa (h) es el lado opuesto al ángulo recto, o lado de mayor longitud del triángulo rectángulo.
  • El cateto opuesto (a) es el lado opuesto al ángulo que queremos determinar.
  • El cateto adyacente (b) es el lado adyacente al ángulo del que queremos determinar.
Todos los triángulos considerados se encuentran en el Plano Euclidiano, por lo que la suma de sus ángulos internos es igual a π radianes (o 180°). En consecuencia, en cualquier triángulo rectángulo los ángulos no rectos se encuentran entre 0 y π/2 radianes. Las definiciones que se dan a continuación definen estrictamente las funciones trigonométricas para angulos de este rango
triang2.png
1) El seno de un ángulo es la relación entre la longitud del cateto opuesto y la longitud de la hipotenusa:
sen.png
El valor de esta relación no depende del tamaño del triángulo rectángulo que elijamos, siempre que tenga el mismo ángulo α , en cuyo caso se trata de triángulos semejantes.

2) El coseno de un ángulo la relación entre la longitud del cateto adyacente y la longitud de la hipotenusa:
cos.png
3) La tangente de un es la relación entre la longitud del cateto opuesto y la del adyacente:
tan.png
4) La cotangente de un ángulo es la relación entre la longitud del cateto adyacente y la del opuesto:
cot.png
5) La secante de un ángulo es la relación entre la longitud de la hipotenusa y la longitud del cateto adyacente:
sec.png
6) La cosecante de un ángulo es la relación entre la longitud de la hipotenusa y la longitud del cateto opuesto:

csc.png

problemas de aplicaciòn de las funciones trigonomètricas

Problemas de aplicacion

1) Un dirigible que está volando a 800 m de altura, distingue un pueblo con un ángulo de depresión de 12°. ¿A qué distancia del pueblo se halla?
Solucion:

2) Calcular el área de una parcela triangular, sabiendo que dos de sus lados miden 80 m y 130 m, y forman entre ellos un ángulo de 70°.

Solucion: 


3)Calcula la altura de un árbol, sabiendo que desde un punto del terreno se observa su copa bajo un ángulo de 30° y si nos acercamos 10 m, bajo un ángulo de 60°.

Solución:


4)Tres pueblos A, B y C están unidos por carreteras. La distancia de A a C es 6 km y la de B a C 9 km. El ángulo que forman estas carreteras es 120°. ¿Cuánto distan A y B?

Solución:




RAZONES TRIGONOMETRICAS Y RAZONES DE ANGULOS DE DEPRESION Y ELEVACION

Ángulos de elevación y de depresión

El término ángulo de elevación denota al ángulo desde la horizontal hacia arriba a un objeto. Una línea de vista para el observador estaría sobre la horizontal.
El término ángulo de depresión denota al ángulo desde la horizontal hacia abajo a un objeto. Una línea de vista para el observador estaría debajo de la horizontal.
Dese cuenta que el ángulo de elevación y el ángulo de depresión son congruentes.

CONCEPTO DE LAS FUNCIONES TRIGONOMERICAS

las funciones trigonométricas son las funciones establecidas con el fin de extender la definición de las razones trigonométricas a todos los números reales y complejos.
Las funciones trigonométricas son de gran importancia en físicaastronomíacartografíanáuticatelecomunicaciones, la representación de fenómenos periódicos, y otras muchas aplicaciones.

Las funciones trigonométricas se definen comúnmente como el cociente entre dos lados de un triángulo rectánguloasociado a sus ángulos. Las funciones trigonométricas son funciones cuyos valores son extensiones del concepto de razón trigonométrica en un triángulo rectángulo trazado en una circunferencia unitaria (de radio unidad). Definiciones más modernas las describen como series infinitas o como la solución de ciertas ecuaciones diferenciales, permitiendo su extensión a valores positivos y negativos, e incluso a números complejos.
Existen seis funciones trigonométricas básicas. Las últimas cuatro, se definen en relación de las dos primeras funciones, aunque se pueden definir geométricamente o por medio de sus relaciones. Algunas funciones fueron comunes antiguamente, y aparecen en las primeras tablas, pero no se utilizan actualmente ; por ejemplo el verseno (1 − cos θ) y la exsecante (sec θ − 1).
FunciónAbreviaturaEquivalencias (en radianes)
Senosen \sen \; \theta \equiv \frac{1}{\csc \theta} \equiv \cos \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\cos \theta}{\cot \theta} \,
Cosenocos\cos \theta \equiv \frac{1}{\sec \theta} \equiv \sen \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\sen \theta}{\tan \theta} \,
Tangentetan\tan \theta \equiv \frac{1}{\cot \theta} \equiv \cot \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\sen \theta}{\cos \theta} \,
Cotangentectg (cot)\cot \theta \equiv \frac{1}{\tan \theta} \equiv \tan \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\cos \theta}{\sen \theta} \,
Secantesec\sec \theta \equiv \frac{1}{\cos \theta} \equiv \csc \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\tan \theta}{\sen \theta} \,
Cosecantecsc (cosec)\csc \theta \equiv \frac{1}{\sen \theta} \equiv \sec \left(\frac{\pi}{2} - \theta \right) \equiv \frac{\cot \theta}{\cos \theta} \,

representacion grafica de las funciones trigonometricas

Representación Gráfica de las Funciones Trigonométricas

 gráficas de las funciones trigonométricas
Si queremos representar en forma gráfica una función trigonométrica tomamos los valores de la variable independiente como abscisas y los valores de la función como ordenadas, obteniendo así una serie de puntos, los que al unirlos nos dará una línea que será la representación gráfica de la función.
Uso de la función seno: ésta se usa cuando en un triángulo rectángulo se conoce un ángulo agudo y el cateto opuesto, o un ángulo agudo y la hipotenusa, o el cateto  opuesto al ángulo dado.
Uso de la función coseno: si en un triángulo rectángulo conocemos un ángulo agudo y el cateto adyacente, o un ángulo agudo y la hipotenusa.
Podemos calcular el cateto adyacente al ángulo dado y la hipotenusa usando esta función.
Uso de la función tangente: si en un triángulo rectángulo conocemos un cateto y el ángulo adyacente a él podemos calcular el otro cateto.
Uso de la función cotangente: por lo tanto en todo triángulo rectángulo si conocemos un cateto y su ángulo opuesto podemos calcular el valor del otro mediante ésta.
Uso de la función secante: ésta se usa cuando se tiene lo contrario que en la función coseno.
Uso de la función cosecante: ésta se usa cuando se tiene lo contrario a la función seno.
















problemas de aplicacion de las funciones trigonometricas

Problema Aplicado 








Paso 2: Relaciona y aplica funciones trigonométricas:



            Sea el ángulo C, el ángulo base, se determina:



            a) Cateto Opuesto = AB = Altura del edificio = h

            b) Cateto Adyacente = BC = distancia = 18 metros.

            c) Ángulo = 54°

            d) Función trigonométrica que relaciona el cateto opuesto y el cateto adyacente 
                es la función Tangente.

Paso 5: La respuesta sería:
La altura del edificio según la posición del observador es de 24.77 metros, a ello, hay que sumarle la altura del observador, lo que nos proporciona:

Altura Total h = 24.77 metros + 1.72 metros = 26.49 metros.


forma para determinar identidades trigonometricas

Las identidades trigonométricas son igualdades que involucran funciones trigonométricas. Estas identidades son siempre útiles para cuando necesitamos simplificar expresiones que tienen incluidas funciones trigonométricas, cualesquiera que sean los valores que se asignen a los ángulos para los cuales están definidas estas razones.Las identidades trigonométricas nos permiten plantear una misma expresión de diferentes formas. Para simplificar expresiones algebraicas, usamos la factorización, denominadores comunes, etc. Pero para simplificar expresiones trigonométricas utilizaremos estas técnicas en conjunto con las identidades trigonométricas.

Antes de comenzar a ver las diferentes identidades trigonométricas, debemos conocer algunos términos que usaremos bastante en trigonometría, que son las tres funciones más importantes dentro de esta. El coseno de un ángulo en un triángulo rectángulo se define como la razón entre el cateto adyacente y la hipotenusa:

Otra función que utilizaremos en trigonometría es “seno”. Definiremos seno como la razón entre el cateto opuesto y la hipotenusa en un triángulo rectángulo:

Mientras tanto la palabra tangente en matemática puede que tenga dos significados distintos. En geometría se utiliza el término de recta tangente, pero a nosotros en trigonometría nos interesa otro término que es el de tangente de un ángulo, el cual es la relación entre los catetos de un triángulo rectángulo , lo mimo que decir que es el valor numérico que resulta de dividir la longitud del cateto opuesto entre la del cateto adyacente al ángulo.
Las siguientes identidades se cumplen para cualquier ángulo en el cual el denominador no sea cero. Estas son identidades recíprocas: